
 1

Development of a state machine sequencer for the Keck Interferometer:
evolution, development & lessons learned using a CASE tool approach

Leonard J. Reder*a, Andrew Booth*a, Jonathan Hsieh*a, Kellee Summers†b

aJet Propulsion Laboratory, California Institute of Technology, bW. M. Keck Observatory,

California Association for Research in Astronomy

ABSTRACT

This paper presents a discussion of the evolution of a sequencer from a simple Experimental Physics and Industrial
Control System (EPICS) based sequencer into a complex implementation designed utilizing UML (Unified Modeling
Language) methodologies and a Computer Aided Software Engineering (CASE) tool approach. The main purpose of
the Interferometer Sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable
science operations to be carried out by a single operator (and/or observer). The interferometer links the two 10m
telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii.

The IF Sequencer is a high-level, multi-threaded, Harel finite state machine software program designed to orchestrate
several lower-level hardware and software hard real-time subsystems that must perform their work in a specific and
sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a
high-speed real-time multiple mode embedded controller via CORBA, or slower controllers via EPICS Channel Access
interfaces. The overall operation of the system is simplified by the automation.

The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody
product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented
and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of
multiple infrastructures is presented.

Keywords: Interferometer, sequencer, CASE tool, UML

1. INTRODUCTION

The Keck Interferometer is the major ground based instrument of NASA’s Origins program. The goal of the program is
to search for extra-solar planets, measurement of extra solar zodiacal dust, and general high angular resolution IR
astrophysics and imaging. Since June of 2002 science data has been collected utilizing the Interferometer (IF)
Sequencer for high-level instrument control. The IF Sequencer is implemented using a subset of the UML design
methodology (two out of twelve UML views). The commercial Rhapsody CASE tool product provided by I-logix is
used for graphical entry of the design and to automatically generate C++ code. Thus the C++ generated is coupled to
Rhapsody’s UML model. To understand the IF Sequencer structure one must first have a conceptual knowledge of the
sequencer role within the overall Interferometer control system software architecture.

The entire control system software consists of a hierarchy of state based controllers (figure 1)1. These consist of various
high-speed real-time embedded controllers based on a JPL framework developed specifically for real-time
Interferometer control (known as the “JPL RTC Toolkit”2 or within this paper referred to as “RTC”). Slower

* Leonard.J.Reder@jpl.nasa.gov; phone 1 818 354 3639; fax 1 818 393 4357; Jet Propulsion Laboratory, MS171-113, 4800 Oak
Grove Drive, Pasadena, CA 91109
† ksummers@keck.hawaii.edu; phone 1 808 885 7887; fax 1 808 885 4464; W. M. Keck Observatory, 65-1120 Mamalahoa Highway,
Kamuela, HI 96743

 2

functionality within the system utilizes legacy Keck Observatory telescope control infrastructure built on the
Experimental Physics and Industrial Control System‡ (EPICS). The overall operation of the system is provided by
automation implemented in the IF sequencer at the top-level. The IF Sequencer is a software program designed to
command the various objects within RTC (that provide real-time servo control of subsystems components such at Fast
Delay Lines (FDLs), Fringe Trackers, etc.). High-level commands are sent to the two large Keck telescopes by way of
telescope sequencers that isolate the IF sequencer from the complexity of the various Keck telescope subsystems. All
components must be commanded to perform their work in a specific and sequential order; though not in the hard real-
time domain. The IF Sequencer is the highest level of control in the Keck Interferometer software control system.§

In the following sections of this paper the development from a simple EPICS implementation to the object oriented
design currently being deployed at Keck are discussed. Our evaluation and selection of the Rhapsody CASE tool
(which was essentially motivated by the automatic state machine code generation capability) is presented. Finally,
some lessons learned and conclusions are given.

2. HISTORY

During the development of RTC and subsequent implementation of Keck Interferometer specific software there had
been much discussion of how to control the lower level subsystems in a unified and consistent way. Experience with
Palomar Testbed Interferometer (PTI) suggested that a high level control program be developed. At PTI, a sequencer
was implemented to run within the VxWorks operating system to perform overall control of the system.

The W. M. Keck Observatory had been using State Notation Language (SNL) that runs within a general sequencer
control program as part of EPICS. This sequencer program was being used for Keck motion control as part of the Keck
AO system and elsewhere. At the start of the IF Sequencer development, the EPICS sequencer had been recently ported

‡ More information on the Experimental Physics and Industrial Control System infrastructure is at
http://mesa53.lanl.gov/lansce8/EPICS/ or http://www.aps.anl.gov/epics/.
§ The current implementation of the Interferometer sequencer includes a primitive version of the Target List Sequencer functionality
implemented between the IF sequencer C++ and the GUI. The Target List Sequencer is intended to further automate the systems and
allow timed observations of groups of star targets. At the time of this writing the implementation of the Target List Sequencer has
not begun.

GUI

Telescope
sequencers

Interferometer
sequencer

Target List
Sequencer

Target list
Planning tools

Telescope
sequencers

EPICS subsystem

GUI

Commands
& status

Commands
& status

Targets &
status

Commands
& status

Targets &
status

Commands
& status

EPICS subsystem
EPICS subsystem

RTC subsystem
RTC subsystem

Fig. 1 Sequencing hierarchy

 3

to UNIX and was a viable solution to the sequencing problem. There was also a desire to use the W. M. Keck legacy
approach and existing organizational standards. Due to a requirement to quickly demonstrate first fringes operation of
the instrument an initial version had to be rapidly implemented. The first version (Increment 0) of the IF Sequencer was
a simple UNIX EPICS sequencer written in SNL that generated periodic sidereal delay values corresponding to a star
target being observed. These values were sent to RTC developed Fast Delay Line controllers via CORBA commands.
Since the SNL language is only an extension to conventional C, the implementation required wrapping CORBA
interfaces with a simple C code API. A library for computing delay line target values at PTI was reused. And a simple
TCL GUI was written that used legacy Keck Keywords to command and monitor the Increment 0 EPICS based IF
Sequencer. This scheme was successfully used for acquiring first fringes but did not have the functionality required for
full up science operation.

It was quickly realized that building state machines purely from procedural compiled code would be cumbersome and
not scale well with complexity, so we set out to explore other solutions. First we tried a more object object-oriented
approach by using TCL with the object-oriented extension called Incr TCL. A small test sequencer consisting of a
simple finite state machine was coded in TCL to drive two test siderostats that were in place at Keck for testing. We
used the State design pattern of reference [3] as the basis for the script. Although using a scripting language made it
easy to modify and test, again, it was realized that with more complex state machines, the code would become difficult
to maintain. It was also noted that some additional development effort would be required to implement the multi-
threaded framework that would be required.

At about the time we were considering these solutions, a colleague suggested using a CASE tool to automatically
generate state machine codes by first representing them as UML state charts. The JPL Deep Space One technology
demonstration mission had evaluated the use of a product called Rhapsody (manufactured by I-logix Corp.4). We
examined the I-logix documentation and quickly decided that Rhapsody was worth serious consideration. After seeing
an on-site presentation and demonstration we started to build basic evaluation sequencer models. This proved to be
more difficult than expected, but without other options, we decided using Rhapsody as our development tool was an
improvement over hand coding. We will comment more about the evaluation in the next section, but from the initial
prototype work, we were able to build the first deployed IF Sequencer (Increment 1) for the purposes of first science
operations.

The Increment 1 version consisted of UML models entered into Rhapsody; only the static class diagram and state chart
views were used. C++ code was auto-generated for execution on the Solaris operating system since real-time was not a
requirement. The Rhapsody tool was coupled to the ACE/TAO CORBA ORB that RTC is built on and a set of helper
classes to wrap primitive RTC functionality were designed. Included in these helper classes was the implicit decision
that the IF Sequencer would be hierarchical with some sort of communications infrastructure sending messages from
one state machine to another. The idea adopted early on was that for each Interferometer subsystem there would be first
a mid-level state machine for direct control (thus we have a state machine for each major Interferometer low-level
subsystem: Fringe Tracker, Fast Delay Line, Angle Tracker, etc.) and then a high-level state machine which commands
each of the mid-level ones.

During the initial development using Rhapsody, a parallel effort was going on to port RTC to the Linux-RTAI platform
in summer of 20015. The RTC had been evolving as well. Eventually there was a port to the Sun Solaris operating
system. It was therefore logical that our next version (Increment 2) leverage and reuse the newest RTC infrastructure
(Fig. 2). RTC consists of a collection of libraries and three executable programs. The libraries provide a white box
framework for building specific servo control objects. The framework includes support for configuration and telemetry.
The executable programs are the Telemetry and Configuration Servers and a CPU Manager. The Telemetry Server
provides a publish/subscribe telemetry implementation via CORBA event channels. A Configuration Server provides a
link to a database of persistent storage so that any parameter within the IF Sequencer can be independently configured at
run-time (Increment 1 used a flat file configuration independent of the RTC Configuration Database).

Figure 2 shows a UML component view of the IF Sequencer within RTC. The use of the CPU Manager allows one to
load and instantiate specific objects that contain state machine code. The CPU Manager is CORBA enabled as are all IF
Sequencer state machine objects (known as RTC Managed Objects since they are loaded and instantiated by the CPU

 4

Fig. 2 Component diagram of IF Sequencer Configuration with JPL RTC Toolkit

Manager). The advantage of this scheme over the Increment 1 is that object instantiation is no longer hardwired. The
application can be reconfigured for various modes of operation. This makes reconfiguration for Visibility Squared,
Astrometry, Nulling, Differential Phase and Imaging modes of the instrument possible. More detail on the specific
UML object-oriented framework is presented in section 4.

3. EVALUATION

Initially, our major goal was to automatically generate state machine code, and we had a rather naïve view of what
CASE tool technology was and what it could do. So immediately a simple, proof of concept, Fringe Tracker state
machine sequencer was implemented. A great deal was learned about the tool and the prototype Fringe Tracker state
machine became the basis for our UML model framework.

Immediately it was discovered that Rhapsody was much more then than a simple state machine code generator. There
was an initial conception that non-programmers would easily use the tool but this was quickly dismissed to be
impractical. Moreover, Rhapsody is, as we quickly learned, a UML design and code generation tool in a general sense.
Rhapsody supports the entire set of UML diagram types8. Figure 3 shows a screen snapshot of Rhapsody. The UML
state chart (a high-level state-machine visibility squared sequencer) is in the right hand window and an overall tree view
of the code model is in the left window. It was learned that groups of classes could be further designed graphically from
which thousands of lines of code were automatically generated.

Code generation from a conceptual graphical model is inherently a tricky thing to do and, it gets even trickier when
third party legacy frameworks must be integrated. Issues arise that you would never think of when hand-writing code.
There are specific manglings that one might want to inflict upon source in special circumstances. Rhapsody-generated
source has its own “coding style”. Unfortunately, this style is inherently different from that of RTC. Modification of
the code style can be made based on adjustment of a large number (hundreds) of configurable properties within the

Middleware and Sequencers
 (Telemetry and Configuration Servers)

CPU Manager Front End UI
Applications

Embedded
Real-time
Control Software
(CPU Managers)

 5

Rhapsody product. The properties allow one to change everything from the graphical appearance of the model to how
code is automatically generated and more. Although the scheme provides great flexibility when making modifications
to generated code, it also causes an equal amount of confusion to the developer trying to change something specific
about the source code. To modify something in the auto-generated code requires the correct property to be changed. It
is a nice feature in that properties follow the hierarchy of your model in scope, but they still can be difficult to keep
track of. For all the inconvenience, the Rhapsody tool is very flexible, and without this feature we would not have been
successful in integrating Rhapsody with our existing RTC framework classes.

Fig. 3 Screen shot of Rhapsody CASE Tool showing model view on left and Harel statechart of visibility squared
science observation sequence state machine subsystem class on right.

The process of using the Rhapsody tool for us was to first enter UML and then spend much time exploring the
properties and entering code within the UML that implements interfaces and uses the Rhapsody supplied framework.
Our core functionality of state machines is embedded into particular classes, the details of which are discussed in the
next section. Within these state machines, one would select states and enter code into specific text entry areas; the
resulting generated code would contain this hand-entered code in specific areas.

Creating code using the methodology of first entering graphical representations to generate framework code and then
entering particular fragments of code to provide specific interfaces and algorithm functionality is quite daunting and
extremely difficult for the developer that is accustomed to line-by-line coding. With much patience and work one can
become proficient with the technology. So our evaluation resulted in the conclusion that auto-generating code for
implementing state machines was not by any means easy, but would be more appropriately characterized as doable and
more manageable over the entire life cycle of our software than any of the other approaches we tried.

4. OBJECT ORIENTED DESIGN (THE UML MODEL)

Figure 2 shows a conceptual component view of the IF Sequencer as it exists within RTC. At the far right are the Keck
specific components that provide fast servo control directly to Interferometer hardware. These are running on VxWorks

Model View
State Machine or Object
Model Graphical Views

 6

single board computers as RTC CPU Manager tasks. Each of these VxWorks components is a set of objects known in
RTC as “Gizmos”.

The IF Sequencer basic functions are (1.) sending commands to RTC Gizmos (e.g. lower-level subsystems) via CORBA
and (2.) transmitting and receiving data through the RTC Telemetry Server (top center of Fig. 2). The sequencer
monitors telemetry items in order to detect responses from subsystems that were commanded. Telemetry is generated
by the IF Sequencer to update status on front-end GUIs that consist of a Python script (left side of Fig. 2).

The Configurator GUI/Configuration Server/Configuration Database as shown in Fig. 2 are used to provide dynamic
run-time configurability to the Sequencer. At the center of Figure 2 is the RTC CPU Manager component. Within the
CPU manager framework are standard interfaces for dynamically loading shared libraries, then finding and/or creating
instances of objects defined by these libraries. The implementation of the IF Sequencer consists of a set of shared
libraries. All of the state machines and support infrastructure are compiled in to a single library called
libSequencerCore.so and into several different lib*Factory.so libraries. Normally, the objects would have been
separated into individual libraries but because we are using the Rhapsody supplied event communication framework
rather than CORBA for state-machine object to state-machine object communications, all objects had to be consolidated
into a single shared library. For each RTC Managed object, we implemented a factory library that provided the
interfaces needed by the CPU Manager framework.

The Sequencer is organized as a hierarchy of classes both in a static sense and in a dynamic sense. Figure 4 shows the
static class diagram. Each of the most specialized classes is a standalone state machine. The state machine code is
defined by user entered statecharts that are associated with a particular class; C++ state-machine code is then
automatically generated. State-machine objects have names ending in suffix of “Subsystem”.

SequencerSubsystem

GizmoSubsystem vSquaredSubsystemNullerSubsystem

katSubsystemftSubsystemfdltargSubsystem

SequencerSubsystem
(Utilities class)

fdltargSubsystem

GizmoSubsystem
(RTC CORBA
Commanding)

Fig. 4 Static class diagram of subsystems class hierarchy

The Sequencer is composed of several mid-level subsystem classes controlled by a single high-level state machine class.
Each of the mid-level subsystem classes, such as fdltargSubsystem (the FDL sidereal target generator), is itself a state
machine that acts as the interface to one or more RTC Gizmos. There is one high-level state machine for each science
mode of the Keck Interferometer. Currently, only the Visibility-Squared mode (vSquaredSubsystem) state machine
has been implemented. A new high-level state machine for Nulling operations (NullerSubsystem) is in its initial stages
of development at the time of this writing. Each of the mid-level state machines has been designed with reusability and
extensibility in mind. The same fdltargSubsystem class used by the vSquaredSubsystem can be instantiated for use
with a high-level NullingSubsystem class with no modifications. As more observing modes come online, more high-
level state machines will be implemented. Similarly, as more RTC Gizmos are implemented, more mid-level subsystem
objects will be needed.

 7

There are many commonalities among the Subsystem classes that make up high-level and mid-level subsystem classes.
In Fig. 4 the SequencerSubsystem and GizmoSubsystem classes are utility classes that implemented the supporting
functionality that enables subsystem classes to send events, push and monitor various types of telemetry and find,
connect to and command an RTC Gizmo.

Although our current implementation only has two levels of subsystem classes, there can be more levels created if
desired. A hierarchical approach seemed to make sense since the sequencer functionality always is expressed as some
composition of subsystems. Further, a hierarchical (tree) model promotes less confusion in an event model (such as the
one included with Rhapsody) because events can only be passed up and down the tree, not sideways.

4.1 SequencerSubsystem Class

In the IF Sequencer, the SequencerSubsystem class provides the foundation for all subsystem (state-machine) objects.
It is a concrete base class, and all other subsystem classes are derived from this class. Figure 5 shows the
SequencerSubsystem class dependencies. Note that the Collection, ManagedObject and ManagedObjectImpl
classes are not actually implemented within the Rhapsody UML model view of Fig. 5 but are stubs referencing
externally-implemented code within the core RTC shared library. The two classes stereotyped as
<<CORBAInterface>> are IDL6 (Interface Definition Language) that define top-level interface methods that all
subsystem classes contain.

SequencerSubsystem

Collection

ManagedObject

<<CORBAInterface>>

SequencerSubsystem_I

<<CORBAInterface>> ManagedObjectImpl

RTC Configuration Class

RTC CPU Manager Classes

Fig. 5 SequencerSubsystem utility class relationship to RTC Toolkit.

The SequencerSubsystem class defines a state machine that serves as the basis for building application-specific
subsystem classes (shown on Fig. 6a). First we describe the utility functions implemented within the
SequencerSubsystem class.

SequencerSubsystem defines several methods to implement a subsystem hierarchy of event communication. The rule
we adopted early on was that the topology is restricted to a single parent and any number of child
SequencerSubsystems. Rhapsody events are passed to the parent through the Upstream method and broadcast to all
children through the Downstream method. The purpose of the Upstream method is to inform a higher-level parent state
machine of important events such as exceptions without knowing the exact type of the parent. Thus, an
fdltargSubsystem instance can propagate a fault event up the hierarchy without knowing if its parent is a

 8

vSquaredSubsystem or a NullerSubsystem. The Downstream method enables the opposite functionality:
broadcasting an event to all child subsystems regardless of exact type. For example, a vSquaredSubsystem can send
an “on” event to all of its connected children. Finally, PushStatusTelemetry is used by GUIs or other clients to update
data on the internal state of the SequencerSubsystem. This method pushes the most recent value for all attached
telemetry items. It is also called after an object has been configured. This way, client applications are informed of
configuration changes as soon as they happen.

The SequencerSubsystem class inherits from Collection to support RTC Configuration use and from
ManagedObjectImpl in order to be interfaced with the RTC CPU Manager framework.

4.1.1 RTC Managed Objects

Every subsystem class (Fig. 5) within the IF Sequencer is derived from ManagedObjectImpl and has an associated
factory class derived from ObjectFactoryImpl that makes them RTC Managed objects. Within the framework, objects
are created by factories. When the managed object is created by the factory, a unique Id is registered with an
ObjectManager (another RTC object) within the CPU Manager. That Id contains both instance Name and Type
information, which are used everywhere the subsystem needs a Name or Type reference. Thus an object already created
within the CPU Manager can readily be found.

4.1.2 Configurable Objects (Collection Class)

Figure 5 shows that the SequencerSubsystem class inherits from RTC Collection class. The Collection class provides
an aggregation relationship with two RTC template convenience classes; Entry<*> and Array<*>. These classes
provide the interface to the Configuration Server. The template type argument can be any of the IDL defined primitive
types. When a new configurable parameter is desired, a new attribute of type Entry<*> or Array<*> is added to the
subsystem class model. The attributes act like conventional primitive types but are configurable.

The Configurator GUI at the bottom left of Fig. 2 is used to set values and execute reconfiguration of subsystem object
instances within the IF Sequencer.

4.1.3 CORBA Command Bindings

Each of the mid-level subsystem classes inherit from the GizmoSubsystem class that provides the capability to resolve
and bind references to RTC Gizmos registered in a CORBA Name Service. The GizmoSubsystem class has an
association with a global singleton running asynchronously in a separate thread called the GizmoManger. The
GizmoManager contains a pair of methods for connection and reconnection to RTC Gizmos. Each class derived from
GizmoSubsystem overrides the pure virtual instrumentInit method, which calls a bindGizmo method of the
GizmoManager. This method will asynchronously find a Gizmo in the CORBA Name Service and correctly bind the
reference to the GizmoSubsystem data member. If at any time the Gizmo becomes unavailable, GizmoSubsystems
calls the GizmoManager reBindGizmo method, which continuously attempts to find the Gizmo again. Since
GizmoManger is running in a separate thread, the subsystem object thread will never be blocked with connection
retries.

4.1.4 Telemetry

The IF Sequencer utilizes the RTC publish/subscribe telemetry infrastructure via an intuitive, efficient, multi-threaded
interface to the Telemetry Server for both supplying and consuming telemetry items. SequencerSubsystem derived
classes publish telemetry in order to update status on GUIs and in archiver software. Subsystem classes subscribe to
telemetry items to monitor behavior of RTC Gizmos under control. Telemetry channel names are hierarchical.

 9

4.1.4.1 Supplying Telemetry

New instances of an RTC object of type SupplierImpl and/or StructSupplierImpl are the fundamental client side
objects used to connect to a unique telemetry channel (one of these objects is instantiated for each channel named). The
overloaded assignment operator “=” is then used to publish (or push) telemetry based on a publishing mode. For
example, one can instantiate a SupplierImpl reference called MyTelemetrySupplier and then push MyValue using the
statement “MyTelemetrySupplier = MyValue;”. The publishing mode is set at construction time and can be changed
externally by configuration. Currently the publish modes supported include: OFF, (the publishing is disabled),
FULL_RATE (published at full rate), VALUE_CHANGE (sending of telemetry over channel happens only on a value
change) or SAMPLE (publish a single value at fixed interval of time).

4.1.4.2 Consuming Telemetry

In RTC, the final destination of telemetry is a user-defined filter class derived from a RTC Filter (handler) class.
Consuming modes can be set analogous to the publishing (supplier) mode of SupplierImpl instances. The telemetry
infrastructure uses a push/push (CORBA event) channel model that allows subscribers to passively wait for data (i.e.
monitor). The subscriber to a telemetry channel defines a Push method within one’s handler. The methods will be
called whenever telemetry moves through the subscribed channel. The Push methods, in the IF Sequencer, are typically
implemented to generate Rhapsody events that cause a state machine (subsystem object) to respond to the received
telemetry value. An example of this is the Fringe Tracker state machine class (ftSubsystem) where an aggregation
relationship to a LockSecsFilter class is established. The LockSecsFilter class inherits from Filter class and
implements a Push method that tests telemetry representing the amount of time a Fringe Tracker has been locked onto a
fringe during an observation. When this exceeds an internally set time, an event is generated to the ftSubsystem state
machine that commands it to sequence the Fringe Tracker to stop tracking.

It is important for consumers to process incoming telemetry data quickly so as not to tie up the limited resources of the
Telemetry Server. This is accomplished through the use of an AsynchronousDispatcher to handle telemetry distribution
with a separate pool of threads, which effectively decouples the Telemetry Server from any consumers.

4.1.5 Derived Classes

Figure 4, above, shows the set of derived classes in the IF Sequencer. These are the NullerSubsystem and,
vSquaredSubsystem high-level automation classes (observation mode state machines) and the fdltargSubystem,
ftSubsystem and katSubsystem mid-level automation classes (for direct sequencing control of RTC Gizmos). More
will be developed as needed. The fdltargSubsystem delivers pre-computed sidereal targets (delay settings) to update
FDL (fast delay line) positions and control them; the ftSubsystem controls the FT (fringe tracker) and the
katSubsystem controls the (Keck) angle trackers. Each of these implements a specialized state machine (subsystem)
class (e.g. fdltargSubsystem in the example shown in Fig. 6b) that is derived from the base state machine (Fig. 6a)
implemented within the SequencerSubsystem class. Derived classes automatically contain the basic state chart
functionality.

The base state machine (Fig 6a) contains five states within a NOMINAL composite state to provide standard behavior
to all derived state machine objects. The only default behavior in each of these five states is to push a structured
telemetry item providing information about current state, last state, and status messages about operation, to an external
software component such as a GUI. The external WARNING and FAULTED states are used to handle exception
behavior (e.g. error states). When a fault condition occurs user code generates an event which causes the state machine
to transition ether to WARNING or FAULTED states. Error recovery (from a FAULTED state) is via operator
intervention only (a halt event is generated to return to the NOMINAL state). This scheme was at the user’s request and
inevitably there will be AI planning and fault recovery methods used on the IF Sequencer problem in the future. Faults
are also propagated to higher and lower-level state machines as necessary.

Derived classes define custom CORBA IDL interfaces by inheriting from SequencerSubsystem_I. An example of this
is shown in Fig. 7 for the fdltargSubsystem class. Recall that SequencerSubsystem_I inherits from ManagedObject,

 10

as shown in Fig 5. Thus SequencerSubsystem_I provides all the methods in the interface defined by RTC Managed
objects in addition to defining the On, Off, ReInit, Halt, SimulateOn, and SimulateOff methods as controls of its basic
(Fig. 6a) state machine behavior. The On, Off, ReInit, Halt methods generate Rhapsody events that cause
corresponding state transitions. The SimulateOn or SimulateOff methods turn on and off, respectively, a simulation
test mode implemented in every derived state machine object. The idea of the simulation mode is to provide a
capability to unit test every state machine in a stand alone configuration, independent of (and without connection to) the
real time system.

NOMINAL

INIT>

RE_INIT>

STANDBY>

OFF>

SHUTDOWN>

WARNING>

FAULTED>

H
NOMINAL

INIT>

RE_INIT>

STANDBY>

OFF>

SHUTDOWN>

WARNING>

FAULTED>

off

reInit

on

warn

halt

fault/

halt

NOMINAL

SHUTDOWN>

STANDBY>

RE_INIT>

INIT>

OFF>

CALC>

ZERO_FDL>

FAULTED>

WARNING>

H
NOMINAL

SHUTDOWN>

STANDBY>

RE_INIT>

INIT>

OFF>

CALC>

ZERO_FDL>

FAULTED>

WARNING>

off

reInit

reInit

on

calc zero_fdl

tm(3000)

halt

fault/

halt

warn

CALC state
updates
sidereal target

RE_INIT state
init. sidereal target
calculation

(a.) (b.)

Fig. 6 Harel State charts (a.) base state machine implementation, (b.) FDL (fast delay line) target generator state
machine (note b. inherits a.).

Because each state machine object is loaded and instantiated by the RTC CPU Manager, the Rhapsody-generated state
machine objects do not have specific knowledge about how they are related. Rhapsody events are passed from state-
machine to state-machine by an inverse invocation scheme. Thus each state machine must have a pointer to the state
machine it wishes to send an event to. This means that direct associations from state machine to state machine for the
purposes of sending events must be explicitly established. Within our UML we create a static class diagram view
similar to that of Fig. 4 but this time it defines associations allowed by type. To establish instance linkages another IDL
method called LinkSubsystems is implemented. LinkSubsystems accepts a sequence of managed object Ids, which
specifies a number of other objects that must be referenced. The caller of LinkSubsystems can also be configurable so
that the hooking up of object instances becomes fully configurable as well (typically the caller is a GUI program or
startup script).

4.2 Delay Line Target Generator State Machine Object (fdltargSubsystem)

An example of a mid-level state machine class is the fdltargSubsystem shown in Fig. 7. An instance of
fdltargSubsystem is a flexible state machine that can control single or multiple pairs of fast delay lines. The primary
purpose of fdltargSubsystem is to compute and update FDL delay target positions every three seconds so that fringe
tracking can be maintained on a sidereal target (star) moving across the sky. This functionality is implemented in Fig.
6b. There is also a set of IDL methods defined by fdltarg_I (not shown in Fig. 6b) that allow fundamental commanding
(e.g. Idle, Calc, Track, etc.) of the FDL RTC Gizmo via fdltargSubsystem. The input to the fdltargSubsystem class
is a catalog record of coordinates for the desired observation that is generated by an external observation planning
system7.

While the fdltargSubsystem example is perhaps one of the simplest state machine implementations in the IF
Sequencer, observations cannot be made without at least one instance of this state machine running. The state machine
implementation (Fig. 6b) adds only two states; CALC and ZERO_FDL. The CALC state updates delay target values
for specific star position and executes RTC Gizmo CORBA target updates. This is repeated every three seconds as
denoted by the tm(3000) in Fig. 6b, which is an internal Rhapsody timer thread event that causes a 3000 millisecond
delay. The ZERO_FDL state is used to send zero targets to both FDLs, effectively parking them at mid range.

 11

Fig. 7 Fast Delay Line Target Generator (fdltargSubsystem) static class diagram

5. LESSONS LEARNED

During the past several years that we have been exposed to CASE tool technology we believe a few things have been
learned along the way. What follows is a list of lessons learned from our efforts to date, but there are without question
more lessons to be learned about this technology:

1. It is hard to integrate multiple infrastructures and even harder to integrate them into a CASE environment.

Although Rhapsody has hooks for adding external infrastructure dependencies, this was by no means easy to figure
out. Corollary: On new CASE tool development projects do not mix, and reverse engineering is hard.

2. “Old programming habits die hard”**. It is hard to learn the graphical/coding UML methodology of the CASE tool
environment if you have been a line-by-line coder for years. Corollary: The tool is powerful and useful but the
learning curve is steep.

3. Maintainability of code is vastly improved. Because C++ code is coupled to a UML graphical model it is more
understandable. The use of UML in this manner automatically limits the amount of reverse engineering of code
required later in the software life cycle.

4. A CASE tool’s real strength lies in its ability to standardize software development across a large team of engineers.
However, using Rhapsody as an individual does have benefits. The state machine-based design can be rapidly
changed graphically with only a minimum amount of coding required. Corollary: Standardized auto-generated
code leads to better infrastructure.

5. When planning a project, consider a process for development and then a tool. Corollary: For CASE tools to be
significantly beneficial requires an overall commitment and investment.

6. Version control of UML models between only a few developers can be is problematic. Corollary: When picking a
CASE tool there should be good model collaboration and version control infrastructure within the tool.

** Douglas Schmidt, Using Design Patterns, Frameworks & CORBA, January 23-25, 2002, UCLA Extension Course.

GizmoSubsystem

Idle(long DelayLineIndex):void
Calc():void

fdltarg_I (IDL Module)

<<CORBAInterface>>

On():void
Off():void
ReInit():void
Halt():void
SimulateOn():void
SimulateOff():void
LinkSubsystems(RTC::ManagedObject::IdSequenceType TheIdSeq):void

SequencerSubsystem_I (IDL Module)

<<CORBAInterface>>

 (State Machine Object)

(RTC CORBA Bindings)

mBaselineTelemetrySupplier : RTC::Telemetry::StructSupplierImpl<SeqTelemetryModule::
mTarget0TelemetrySupplier : RTC::Telemetry::StructSupplierImpl<KeckDelayLineModule::
mCoordTelemetrySupplier : RTC::Telemetry::StructSupplierImpl<CatalogManager::Coord,
instrumentInit():void
calc()
(U)initTarg(char* arg0,double * arg1,const char * arg2):void
(U)delayTarg(double arg0,double arg1,int arg2,double * arg3):void

fdltargSubsystem Telemetry
Supplier
Instances

 12

7. One of the original attractive features of Rhapsody was animation of state machine functionality but this was never
completely functional on the Solaris operating system, so the more traditional gdb was used for debugging.
Corollary: Features in a tool may look good during a sales demo, but be careful!

8. When starting, one should evaluate and not guess at a CASE tool to use; there are lots of choices today.
9. Templates were not included with the Rhapsody case tool so we implemented them externally and hooked them

into the tool. This is a kludge and is confusing to a new developer. This effectively defeats rule 3 above.
10. The urge to use many of Rhapsody’s framework features has sometimes overwhelmed the wiser inclination to use

more standardized tools such as the STL (C++ Standard Template Library).

6. CONCLUSION

We have implemented a multi-threaded state machine based, high-level, control capability for the Keck Interferometer.
The main difference between interferometer sequencers comes down to multiplicities of baselines and instrument
subsystems. The IF Sequencer subsystem (state-machine) classes have been designed to be highly configurable and
flexible while reusing a basic state-machine initialization and error handling scheme.

The CASE tool approach is superior to hand line-by-line coding since it promotes both a graphic design technique and
process driven approach to software design. Furthermore, an improvement in design and maintenance over the life-
cycle is realized. Although dealing with third party infrastructures outside of the Rhapsody tool is problematic at first,
after a significant effort at integration it becomes easy to graphically add states and additional software architecture.
Rhapsody is an excellent tool, especially for state machine design and the problem fits nicely into the infrastructures
provided by I-logix and the JPL developed RTC toolkit.

ACKNOWLEDGEMENT

The work performed here was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration. The authors would like to thank the following people
who contributed to this effort: Mark Colavita for helpful definition and support during the evaluation of the CASE tool;
Thomas Lockhart and Kevin Tsubota for assistance resolving various software issues.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

REFERENCES

1. Andrew Booth, et. El., Overview of the control system for the Keck Interferometer, SPIE Advanced Telesope
and Instrumentation Control Software II Conference 4848, Waikoloa, HI. August 2002.

2. T. Lockhart, RTC: a distributed real–time control system toolkit, SPIE Advanced Telesope and
 Instrumentation Control Software II Conference 4848, Waikoloa, HI. August 2002.
3. Erich Gamma, et. El., Design Patterns Elements of Reusable Object-Oriented Software, Addison Wesley,

1995.
4. I-logix website http://www.ilogix.com/ has Rhapsody product information and white papers.
5. Philip C. Irwin, R. L. Johnson, Real-time control using an open source RTOS, SPIE Advanced Telescope and

Instrumentation Control Software II Conference 4848, Waikoloa, HI, August 2002.
6. Michi Henning and Steve Vinoski, Advanced CORBA Programming with C++, Addison Wesley, 1999.
7. Interferometric Observation Planning Tool Suite, Michelson Science Center.

http://msc.caltech.edu/software/.
8. Grady Booch, et. El. The Unified Modeling Language User Guide, Addison Wesley, 1999.

